If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4h^2-40h+99=0
a = 4; b = -40; c = +99;
Δ = b2-4ac
Δ = -402-4·4·99
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4}{2*4}=\frac{36}{8} =4+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4}{2*4}=\frac{44}{8} =5+1/2 $
| 8p-18=3(p+3) | | 5(4-9n)=n=-3 | | 9c÷5=18 | | 4x2+12x–16=0 | | x+295=180 | | 3y+7/4=31/4 | | 12=72/3+2x | | 3y+7/4=31/5 | | -3(1-x)=6-6x | | P-3f+2=0 | | 3/x=40/240 | | 2x+3-5x^2=0 | | 9(2×-1=3(6x) | | -9m=-4m | | |4x-5|+7=12 | | X²-3x-648=0 | | 1/2x+5=2x+20 | | -6x+5x=55 | | 1/2x=5+2x=20 | | 105=15x+20x | | 2^x+3=30 | | 2y+8y-10=0 | | 25=63-y | | 5l+28=10 | | √r=√-144 | | z(z+5)=5 | | x+8x=792 | | X+4+7x-6=180 | | 2a-6=19 | | 3y^2+y=5y-1 | | 7x-6+x+4=180 | | 3*4*2k=24 |